“人工智能”“机器学习”“深度学习”“联邦学习”“自动化”等已经成为互联网行业使用最频繁的词汇,在人工智能发展日益成熟的今天,越来越多的研究者将目标聚焦于“自动化”。出于对AutoML技术出现的振奋和对人工智能的热情与投入,我们逐渐萌生了撰写这本书的想法,我们想让更多的人了解AutoML,了解我们身边最前沿的技术和知识,最终能够让天下没有难的AI,实现普惠AI。如果一定要问我们写这本书的原因,我觉得可以归结为如下三点:
首先,已经有多家互联网公司发布了AutoML平台,毫无疑问AutoML已经成为目前各大公司的“护城河”,我们希望通过本书来揭开AutoML平台的神秘面纱。基于AutoML平台,专业编程人员和非专业人员均可快速创建项目并训练模型,但是,由于国内至今还没有一本关于AutoML算法介绍的书籍,平台用户只知其然却不知其所以然。
其次,我们想要通过本书建立一套完整的AutoML知识体系。很多AutoML从业者懂技术,但是缺少一套完整的知识体系来支撑自己的核心技术,有鉴于此,我们在开始撰写本书前做的第一件事就是建立知识体系,包括自动化机器学习、神经架构搜索的核心算法、自动化模型压缩、模型调参、深度学习的垂直领域应用以及元学习等。这套知识体系可以帮助很多从业者认清技术方向,也可以帮助初期从业者选择研究领域。我们期望有更多人来为AutoML这个诞生仅仅一年半的新技术添砖加瓦,共建AutoML生态。
最后,我们希望这本书能为更多非专业人员带来价值。本书的初期定位是AutoML入门书籍,换句话说,我们撰写的初衷是想为更多不懂算法但是热爱AI技术的爱好者提供一些思路和理解角度。因此,我们在本书中尽量使用白话来解释算法思想,从人工智能的初期发展到AutoML技术的成熟,可以让每一个非技术人员快速理解AutoML。
对于本书,我们倾注了很多热情和心血,从2017年年底AutoML技术开始出现就开始深入探索,接着起草最初书稿框架到成型历时一年多,其中经过了多次章节结构调整和修改,查阅并解读近百篇AI前沿论文,才有了今天大家看到了这本书。在本书中,我们从0到1介绍了AutoML技术的方方面面,希望这本书能带给你惊喜。
本站只提供图书的试读版,同时欢迎更多的爱好读书的朋友来电子书下载网来分享更多好看的pdf电子书,免费下载您所需要的电子书籍。